Development of highly automated Next Generation Sequencing IVD tests for Solid Tumours

*Vela Research Pte Ltd, Singapore

Introduction

With the increased use of NGS (Next Generation Sequencing) in clinical settings, Vela Diagnostics has developed four automated NGS based In Vitro diagnostics oncology disease panels (Sentosa® SQ Melanoma Panel, Sentosa® SQ CRC Panel, Sentosa® SQ NSCLC Panel and Sentosa® SQ Thyroid Cancer Panel to aid medical decision-making.

The panels are based on target amplification of disease related genes harbouring actionable/ prognostic related somatic hotspot mutations.

Design: Target gene list of the panels

<table>
<thead>
<tr>
<th>Targets for Sentosa® SQ Melanoma Panel</th>
<th>Targets for Sentosa® SQ CRC Panel</th>
<th>Targets for Sentosa® SQ NSCLC Panel</th>
<th>Targets for Sentosa® SQ Thyroid Panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRAF/MKR</td>
<td>MKR</td>
<td>MKR</td>
<td>MKR</td>
</tr>
<tr>
<td>AKT/CTNNB1</td>
<td>CTNNB1</td>
<td>CTNNB1</td>
<td>CTNNB1</td>
</tr>
<tr>
<td>CDKN2A/PIK3CA</td>
<td>PIK3CA</td>
<td>PIK3CA</td>
<td>PIK3CA</td>
</tr>
<tr>
<td>MAP2K1/FGFR3</td>
<td>FGFR3</td>
<td>FGFR3</td>
<td>FGFR3</td>
</tr>
<tr>
<td>FGFR3/RET</td>
<td>RET</td>
<td>RET</td>
<td>RET</td>
</tr>
<tr>
<td>GNA11/PTEN</td>
<td>PTEN</td>
<td>PTEN</td>
<td>PTEN</td>
</tr>
<tr>
<td>GNA11</td>
<td>RET</td>
<td>RET</td>
<td>RET</td>
</tr>
<tr>
<td>Total Number of Targeted Mutations</td>
<td>127</td>
<td>113</td>
<td>105</td>
</tr>
</tbody>
</table>

Methods and Workflow

Sample ID

- Extraction and Library Prep
- Template Prep
- Sequencing
- Data Analysis
- Result Upload to LIS

Conclusion

- **Sentosa® SQ Melanoma Panel**: clinical sensitivity and specificity has been determined for the most frequent and clinically important target mutations in Melanoma samples – BRAF V600E.
- The reference method is Sanger Sequencing.
- 4 runs were tested using FFPE material carrying 39 mutations (BRAF V600E, 22 with vs 17 without BRAF V600E).
- 4 runs were tested using FFPE material carrying 39 mutations (BRAF V600E, 22 with vs 17 without BRAF V600E).
- All targets were successfully recovered.

Sentosa® SQ CRC Panel: clinical sensitivity and specificity has been determined for the most frequent and clinically important target mutations in CRC samples – KRAS G12A/C/D/R/S/V/G13D.

- The reference method is KRAS PCR Test.
- 3 lots of Sentosa® SQ CRC Panel Kit used.
- 62 samples tested: 16 positive, 46 negative.
- Clinical sensitivity: 100% (95%CI: 96.34-100%)
- Clinical specificity: 100% (95%CI: 96.34-100%)
- Negative 0 80
- Positive 74 0

Sentosa® SQ NSCLC Panel: clinical sensitivity and specificity has been determined for the most frequent and clinically important target mutations in NSCLC samples – EGFR and ALK.

- The reference method is Sanger Sequencing.
- 3 lots of Sentosa® SQ NSCLC Panel Kit used.
- 62 samples tested: 16 positive, 46 negative.
- Clinical sensitivity: 100% (95%CI: 96.34-100%)
- Clinical specificity: 100% (95%CI: 96.34-100%)
- Negative 0 80
- Positive 73 0

Sentosa® SQ Thyroid Cancer Panel: clinical sensitivity and specificity has been determined for the most frequent and clinically important target mutations in Thyroid Cancer samples – BRAF V600E.

- The reference method is Sanger Sequencing.
- 3 lots of Sentosa® Thyroid Cancer Panel Kit used.
- 62 samples tested: 16 positive, 46 negative.
- Clinical sensitivity: 100% (95%CI: 96.34-100%)
- Clinical specificity: 100% (95%CI: 96.34-100%)
- Negative 0 80
- Positive 72 0

Conclusion

- All the panels (viz. Sentosa® SQ Melanoma Panel, Sentosa® SQ CRC Panel, Sentosa® SQ NSCLC Panel and Sentosa® SQ Thyroid Cancer Panel) have been verified and validated with ≥95% analytical and clinical sensitivity-specificity.
- In conclusion: robust, minimal hands-on, workflow-automated oncology NGS IVD panels holds great promise to contribute significantly to personalized cancer diagnosis and treatment.

Table: Comparison of Clinical Validation

<table>
<thead>
<tr>
<th>Panel Type</th>
<th>Mutation</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
<th>Positive Calls</th>
<th>Negative Calls</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRAF V600E</td>
<td></td>
<td>100 (95%CI: 96.34-100%)</td>
<td>100 (95%CI: 96.34-100%)</td>
<td>0</td>
<td>80</td>
</tr>
<tr>
<td>KRAS G12A/C/D/R/S/V/G13D</td>
<td></td>
<td>100 (95%CI: 96.34-100%)</td>
<td>100 (95%CI: 96.34-100%)</td>
<td>0</td>
<td>80</td>
</tr>
<tr>
<td>EGFR</td>
<td></td>
<td>100 (95%CI: 96.34-100%)</td>
<td>100 (95%CI: 96.34-100%)</td>
<td>0</td>
<td>80</td>
</tr>
<tr>
<td>BRAF V600E</td>
<td></td>
<td>100 (95%CI: 96.34-100%)</td>
<td>100 (95%CI: 96.34-100%)</td>
<td>0</td>
<td>80</td>
</tr>
</tbody>
</table>

Poster Presenter: ATREYEE SAHA
Contact: GERD MICHEL gerd.michel@veladx.com

www.veladx.com

The power of standardized versatility